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Abstract. Potential flow about a slender spheroid beneath a free surface is considered in order to determine the
ability of thin-ship theory to reproduce the free-surface elevation accurately. A fully nonlinear code involving
interior Rankine sources is used, enabling comparisons between exact (‘Neumann-Stokes’) outputs, outputs with
exact body condition but linearised free-surface conditions (‘Neumann-Kelvin’), and a consistent thin-ship ap-
proximation (‘Michell-Kelvin’). In general, these computations agree to within a few percent, except when the
body is so close to the free surface that the nonlinear computation suggests that breaking is imminent at one point
above the body, and even then thin-ship theory still compares well except very near to that isolated point. The thin-
ship theory has also been implemented in a separate general-purpose code using Havelock sources, and detailed
free-surface contours computed by this linear method are shown for spheroids that are too close to the surface for
the nonlinear code to converge.
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1. Introduction

This investigation is intended to provide quantitative information on the extent to which thin-
ship theory is a good approximation for computation of free-surface waves made by steadily
moving bodies. In order to be definite, we restrict attention in this comparison to a submerged
spheroid with a beam-to-length ratio of 0·1. Submerged spheroids have often been used as test
cases for ship-wave studies, e.g. [1], and the present paper adds some new computations and
insights on actual near-field wave elevations. Formally, thin-ship theory e.g. [2], [3, p. 572]
only requires small beam-to-length ratio, the beam-to-draft ratio being irrelevant, so it should
be applicable to such a body. Figure 1 shows the free surface produced by such a submerged
body, in the form of detailed contours computed by a thin-ship program SWPE to be described
later.

There are two mathematical simplifications that are made by thin-ship theory. The major
simplification is that which is common to all linear theories, namely that the kinematic and
dynamic free-surface boundary conditions can be approximated by a linearised condition on
the plane equilibrium surface. The second simplification is that the disturbance due to the body
can be approximated by a (known) continuous distribution of singularities along the centre-
plane of the thin body. To gain a better understanding of the influence that these two distinct
but connected simplifications have on the accuracy of the approximation, it is necessary to
consider their numerical consequences separately. In order to do this, an interior discrete
Rankine-source code [4] which is capable of, reproducing all of these different combinations
of approximations will be used.
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Figure 1. Contour plot of surface elevations due to a spheroid at Froude number 0·5 with diameter-to-submergence
ratio 1·5.

Three implementations of the code will be used. The most accurate Neumann–Stokes
or ‘exact’ mode enforces the exact (Neumann) boundary condition on the body, and both
the kinematic and dynamic exact (Stokes) boundary conditions on the actual displaced free
surface. The Neumann–Kelvin mode (as used in many previous studies: such as [5], [6])
also enforces the exact boundary condition on the body, but approximates the free surface
by enforcing only a linearised (Kelvin) boundary condition on the plane z = 0. Finally, the
Michell–Kelvin or ‘thin-ship’ mode uses the linearised free-surface condition, and in addition
approximates the body boundary condition by use of a continuous distribution of singularities
of predetermined (Michell) magnitude along the centre-plane.

The assumption will then be made that the Neumann–Stokes mode renders (of these three
modes) the best approximation to the (unknown) exact solution, and therefore this output will
be used as the benchmark for accuracy comparisons, especially to assess the accuracy of the
Michell–Kelvin or thin-ship theory. This comparison thus concentrates on errors in the thin-
ship assumption, as distinct from errors associated with the physical model, such as neglect of
viscosity.

Two free-surface error measures are used, one of which identifies maximum errors, occur-
ring at the highest crests and lowest troughs in the wave field. Such local isolated errors in
thin-ship theory can be as high as 50% for the most shallow submergences used here, where
the largest waves are very near to breaking. However, the general magnitude of the error over
the whole wave field is even then only of the order of 5% or less, and this is displayed by use
of a root-mean-square error estimate, averaging errors over the whole field.



A comparison of linear and nonlinear computations of waves 257

As the submergence is increased, the thin-ship error reduces dramatically, but not to zero.
There is still a small (2% to 3%) residual error even at large submergences, attributable to
the inability of the Michell body boundary condition to capture the true local flow around the
nose and tail of bluff bodies such as spheroids, and this residual error can only be reduced by
reverting to the exact Neumann body boundary condition. However, it is swamped by a much
larger error due to the Kelvin free-surface approximation when the body is close to the free
surface.

2. Exact and approximate boundary conditions

Our task (assuming steady irrotational flow of an inviscid incompressible fluid of infinite
depth) is to solve Laplace’s equation

φxx + φyy + φzz = 0 (1)

for the disturbance potential φ(x, y, z) to a stream U due to the presence of a body y =
±Y (x, z), beneath a free surface z = Z(x, y). The exact Neumann body boundary condition
is

φy = [
U + φz

]
Yx + φzYz on y = Y (x, z), (2)

and the exact Stokes free-surface conditions (on the unknown free-surface z = Z) are

φz = [
U + φx

]
Zx + φyZy (3)

and

gZ + 1
2

[
(U + φx)

2 + φ2
y + φ2

z

] = 1
2U

2. (4)

We are interested in thin bodies with small Y and hence small φ and Z. In that case, the
Neumann condition (2) is approximated by the Michell condition

φy = UYx on y = 0+, (5)

and the Stokes boundary conditions (3, 4) by approximations which may be combined to give
the Kelvin condition

gφz + U 2φxx = 0 on z = 0. (6)

Although it is consistent to make both the Michell and Kelvin approximations together (since
both are ultimately due to smallness of Y), it is our present aim to consider their effects
separately.

3. Brief description of the numerical method

The Rankine source program, in its most accurate (Neumann–Stokes) mode, solves (1) subject
to the boundary conditions (3, 4), and is fully described in [4]. The velocity potential φ(x, y, z)

is represented by the sum of a finite but large number of discrete Rankine sources distributed
externally to the fluid domain (that is, both inside the body and above the free surface). An
iterative procedure is employed to refine successively approximations to the free surface and
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potential (via the unknown source strengths) until an accurate solution is obtained. Consider-
able care is taken when developing the iterative procedure (as in [7]) to ensure a quadratic rate
of convergence to the desired solution.

It was found that the program was more robust if the kinematic condition (3) was re-
placed by a condition that the pressure remained constant when following a fluid particle.
A radiation condition was enforced numerically to eliminate waves far ahead of the body.
The Rankine source strengths are all unknown in advance, and are determined as part of the
solution process. Their positions are fixed during the iteration, those inside the body at a
pre-determined distance inside the hull, and those above the free surface at a pre-determined
distance above the plane z = 0.

For the linear modes of the program, when the Kelvin free-surface condition (6) is used,
iteration is not required, and the source strengths are determined by solving linear algebraic
equations once only. For the Neumann–Kelvin problem, Rankine sources are still placed at
fixed distances inside the actual hull surface, but for the Michell–Kelvin problem the interior
singularities are replaced by centreplane distributions of horizontal dipoles of known strength.

An advantage of locating singularities externally to the fluid domain is that the potential
and its derivatives can be evaluated easily everywhere on the boundaries. This also allows
greater freedom when choosing their locations and, with care, they may be located so that
the boundary conditions are satisfied not only at the discrete collocation points at which the
boundary conditions are exactly enforced, but also (to at least 4-figure accuracy) on the bound-
ary segments that join them, thus producing a significantly more accurate representation of the
body than might otherwise be the case. Another advantage of Rankine sources and dipoles is
that their potential and derivatives are straightforward and inexpensive to compute.

4. Representation of body and free surface

Firstly, an accurate representation of the flow about a spheroid is sought, such that the flux
through the body’s surface is minimal. On the basis of an investigation of equivalent deeply-
submerged flows, we chose to use 65 stations, each having 32 nodes equally spaced in angle
around the circumference of the circular cross-section, although symmetry means that there
are only 17 unknown source strengths per station, thus about 1100 unknowns attributable to
the body.

Similarly, a representation of the free surface which simultaneously satisfies several criteria
is sought. The free-surface domain must extend far enough downstream to capture several
wavelengths, far enough upstream to implement a radiation condition, be large enough to
represent the flow around the body, have fine enough resolution to resolve both the free-surface
waves and the body, and be comprised of few enough collocation points to be computationally
feasible. Needless to say, it is not always possible to satisfy all of the criteria given current
super-computing capabilities, especially at the highest and lowest Froude numbers of interest.
Nevertheless, a representation which uses 91 collocation points in the x-direction, 49 collo-
cation points in the y-direction and extends from x = −3·75U

√
L/g to 7·5U

√
L/g proves

to be adequate over the range of Froude numbers that are considered here. Thus (again using
y-symmetry) we have about 2300 unknowns attributable to the free surface, making a total of
about 3400.

When using the program in the thin-ship mode, we observe that the Michell boundary
condition (5) is satisfied by using a centreplane distribution of x-directed dipoles, of moment
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proportional to the local body thickness 2Y (x, z). For numerical purposes we approximate this
known continuous distribution by a collection of discrete dipoles, with strengths weighted
by the area that they represent. The centreplane ellipse is discretised in the x-direction into
65 strips, each of which is further discretised in the z-direction into 17 rectangular cells, so
maintaining consistency with the number of Rankine sources used to satisfy the Neumann
boundary condition.

5. Error measures

Comparisons between free surfaces produced by the various modes of computation are made
for the 1:10 spheroid, for various diameter-to-submergence ratios and Froude numbers. We
calculated error measures using the (exact) Neumann–Stokes mode as the benchmark for the
comparison. In particular, a scaled maximum error and a scaled root-mean-square (r.m.s.)
error are determined as follows. The scale used for this comparison is determined by the exact
solution, namely the vertical distance H between the lowest trough and the highest crest in the
whole wave field.

Then, at each point on the free surface, we determine the difference between the approx-
imate and exact elevations Z(x, y). The maximum error is then defined as the difference
between the (positive) maximum and (negative) minimum values of this difference, and the
scaled maximum error is the ratio between that maximum error and the scale H. In a similar
manner, we can determine the mean square error in the free surface by averaging the square
of the point-wise elevation differences over the whole field, and divide the square root of this
quantity by H to give the scaled r.m.s. error.

The maximum error tends to overstate the discrepancies at points of the surface other than
that where the maximum error occurs. It is entirely determined by the error that occurs near
the very highest crest and deepest trough in the wave field (usually in the near field close to
the stern), and this particular wave element can be close to or actually breaking when the body
is shallowly submerged. It is difficult for any numerical code to estimate such near-breaking
waves, and differences between various approximation methods, including the Neumann–
Kelvin and Michell–Kelvin modes tested here, become exaggerated. Meanwhile, however, at
points other than the extreme crests and troughs, the errors are far less at the same speeds and
submergences.

This is accounted for in part by the r.m.s. error, which averages errors over the whole flow
field. On the other hand, the r.m.s. error somewhat understates the magnitude of the error,
since for example a significant part of the domain where computations are being compared
lies upstream of the wake, where all disturbances are small and hence only small contributions
are made to the average. However, a combination of these two measures of the error can be
useful to judge the accuracy of the results.

6. Accuracy comparisons

Figure 2 shows the scaled maximum error of the Michell–Kelvin thin-ship mode for vari-
ous Froude numbers and diameter-to-submergence ratios, while Figure 3 similarly shows the
scaled r.m.s. error. The diameter-to-submergence ratio increases in steps of 0·1, from 0·1 at
the bottom to 1·0 at the top, in this and all other curves in this series. That is, the bottom curve
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Figure 2. Scaled maximum error in the free surface computed by the thin-ship mode when compared to that
computed by the exact mode for the 1:10 spheroid. In this and other figures to follow the diameter-to-submergence
ratio increases in steps of 0·1, from 0·1 to 1·0 from bottom curve to top curve.

is for the largest submergence, with little disturbance to the free surface, whereas the top curve
is for the most shallowly submerged case, where the highest waves are made.

The most shallow submergence tested, with diameter-to-submergence ratio 1·0, corre-
sponds to a half-diameter of water above the highest point of the hull. The maximum error
is then quite large, of the order of 50% or more, but the wave front between, the deepest
trough and the highest crest is so steep that it is on the verge of breaking and is inevitably
poorly predicted by the linear theory.

On the other hand, the bottom curve in the figure, with diameter-to-submergence ratio 0·1,
corresponding to deeply submerged bodies, has maximum errors of the order of 4% or less,
because the waves are smaller and more easily predicted by linear theory. Meanwhile, the
r.m.s. error as displayed in Figure 3 is consistently much lower than the maximum error, of
the order of 5% for shallowly-submerged bodies at low Froude number, reducing to the order
of 2% or less for all submergences at high Froude number.

These two figures give an indication of the total error that is to be expected when ap-
proximating this nonlinear wave-generation problem by a consistent linearised formulation.
Of particular interest is the fact that the errors tend to a non-zero minimum as the diameter-
to-submergence ratio is decreased; that is, as the body becomes more and more deeply sub-
merged. This indicates that there is a residual error associated with the Michell approximation
to the body boundary condition, independent of the presence of the free surface.

It is of interest to repeat these comparisons, again using the exact Neumann–Stokes mode
as the basis for the comparison, but this time using the Neumann–Kelvin mode instead of the
Michell-Kelvin results as the approximation, i.e. to assess the effect of the linearised free-
surface condition in isolation.

Figures 4 and 5 show the resulting scaled maximum errors and r.m.s. errors. For the mid-to-
high Froude numbers, the maximum errors for shallowly submerged bodies (in the top curves
for which the diameter-to-depth ratio is 1·0) remain essentially the same as for the Michell–
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Figure 3. Scaled r.m.s. error in the free surface computed by the thin-ship mode when compared to that computed
by the exact mode for the 1:10 spheroid.

Figure 4. Scaled maximum errors in the free surface when Neumann–Kelvin results are compared to Neu-
mann–Stokes results for the 1:10 spheroid.

Kelvin approximation, indicating that nonlinear free-surface effects account for much (but not
quite all) of this error. On the other hand, for smaller Froude numbers, the errors are now
significantly reduced, indicating that the body boundary condition is more important then.

Also, one can see that the error now tends to zero as the diameter-to-submergence ratio
approaches zero. The residual errors of the order of 3% for deeply-submerged bodies when in
Michell–Kelvin mode are thus due to the inability of the distribution of singularities along the
centre-plane to reproduce the flow about the body in an accurate manner. Such errors (of the
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Figure 5. Scaled r.m.s. errors in the free surface when Neumann–Kelvin results are compared to Neumann–Stokes
results for the 1:10 spheroid.

Figure 6. Centreline surface elevations for all three modes of the Rankine-source code and SWPE for a spheroid
with Froude number 0·5 and diameter-to-submergence ratio 1·0. The spheroid extends from bow at k0x = −2·0
to stern at k0x = +2·0.

order of a maximum of 3% for beam-to-length ratio 0·1, and varying in proportion to beam-
to-length ratio) will be present at all depths, though overwhelmed by larger free-surface errors
for shallow submergences.

As an aside, one should note that the effects of the two approximations are not simply
additive. That is, one cannot simply take the error due to nonlinearity and add it to the error due
to the body representation, and arrive at the error in the consistent thin-ship approximation.
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The conclusion that the body-boundary-condition approximation produces a residual error
at large submergence is supported further when we analyse the wave resistance produced by
the various modes, again using the nonlinear results as the basis for comparison. Although
we do not show the results here, we then see a similar pattern, with the relative error in the
Neumann–Kelvin wave resistance tending to zero as the submergence is increased, whereas
the relative error in the Michell–Kelvin wave resistance (which is Michell’s original [2] inte-
gral) tends to a non-zero limit. For the 1:10 spheroid, this limiting relative error in the wave
resistance is approximately 6%.

7. Thin-ship results via Havelock sources

In the above comparison study for the submerged spheroid, the code always used Rankine
sources, and hence these sources needed to be placed both inside the body and above the free
surface. For any linearised problem, where the Kelvin free-surface condition is being used, it
is more efficient for highly detailed computations to use ‘Havelock’ sources which satisfy the
Kelvin condition exactly, so that sources are only needed inside the body. A Havelock source
located at (x, y, z) = (0, 0, ζ) is defined ([3, p. 484]) by

G(x, y, z; ζ) = − 1

4πr

+ 1

4π2
	e

∫ π/2

π/2
dθ

∫ ∞

0
dk

k + k0 sec2 θ

k − k0 sec2 θ
eik(x cos θ+y sin θ)+k(z+ζ), (7)

where r = √
x2 + y2 + (z − ζ)2 and the path of k-integration passes above the pole at k =

k0 sec2 θ, with k0 = g/U 2. The first term is the ordinary infinite-fluid Rankine source, and the
double integral is the correction for the free surface. The Michell–Kelvin solution is then a
distribution of such sources, of strength 2UYx per unit area, over the centreplane R, i.e.

φ(x, y, z) = 2U

∫∫
R

Yξ(ξ, ζ)G(x − ξ, y, z; ζ) dξ dζ. (8)

We have developed code to compute the Michell–Kelvin solution for the wave elevation
z = Z(x, y) = −(U/g)φx(x, y, 0) in the form

Z(x, y) = 1

π2
	e

∫ π/2

π/2
dθ

∫ ∞

0
dk

k2

k − k0 sec2 θ
(P + iQ) eik(x cos θ+y sin θ) (9)

where

P + iQ =
∫∫

R

Y (x, z) eik cos θx+kzdx dz. (10)

This code ‘SWPE’ is described in [8]. Results from SWPE for submerged spheroids agree
closely with those computed using the Michell–Kelvin mode of the Rankine-source code, but
have the advantage that a very finely detailed free surface of more than 100,000 points can be
computed very rapidly.

Figure 6 shows the centreline free-surface elevations produced by all three modes of the
Rankine-source code and by SWPE. The particular case shown is that of a 1:10 spheroid at
Froude number F = 0·5 with diameter-to-submergence ratio of 1·0. In the figure, all lengths
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have been scaled by k0, so the spheroid has length 4 and diameter 0·4, and is located with its
centre directly beneath the origin and at depth 0·4.

In general, all four results are very similar, with differences between the results becoming
apparent only in the immediate neighbourhood of the body. The dominant nonlinear feature is
the deepening of the primary trough near the stern (the free surface there being sucked down
due to reduced pressure as the fluid accelerates past the spheroid) and a consequent increase
in steepness of the following wave face. Thus for this test case at least (see [9] for some other
similar tests), any of the linearised approximations gives an accurate representation of the free
surface, and in particular the thin-ship approximation is very satisfactory.

Figure 1 shown earlier demonstrates the ability of the Havelock-source code SWPE to
determine very detailed free-surface contours near a spheroid submerged to a depth less than
that which is possible using the fully-nonlinear code. Here we keep the Froude number at
F = 0·5, but increase the diameter-to-submergence ratio to 1·5, so that, the spheroid is now
centred at a depth of 0·267, with only 0·067 units of water above it when at rest. In fact the
spheroid is now so shallowly submerged that SWPE predicts that it is partially exposed at
the primary trough when in motion. A clear advantage of the thin-ship theory in this case is
the ability to robustly produce free-surface elevations, even when in reality there may be a
highly-localised breaking wave, and when any sufficiently accurate nonlinear code must fail
to converge for this reason.

References

1. V. Bertram, W.W. Schultz, Y. Cao and R.F. Beck, Nonlinear computations for wave drag, lift and moment of
a submerged spheroid. Schiffstechnik 38 (1991) 3–5.

2. J.H Michell, The wave resistance of a ship. Phil. Mag. 5th series 45 (1898) 106–123.
3. J.V. Wehausen and E.V. Laitone, Surface waves. In: S. Flügge (ed.), Handbuch der Physik, vol. 9. Berlin:

Springer-Verlag (1962) pp. 446–778.
4. D.C. Scullen, Accurate Computation of Steady Nonlinear Free-Surface Flows. Ph.D. thesis, De-

partment of Applied Mathematics, The University of Adelaide, February 1998. (downloadable from
http://www.maths.adelaide.edu.au/Applied/staff/dscullen/Web_pages/publications.html).

5. L.J. Doctors and R.F. Beck, Numerical aspects of the Neumann–Kelvin problem. J. Ship Res. 31 (1987)
1–13.

6. R. Brard, The representation of a given ship form by singularity distributions when the boundary condition
on the free surface is linearized. J. Ship Res. 16 (1972) 79–92.

7. D.C. Scullen and E.O. Tuck, Nonlinear free-surface flow computations for submerged cylinders. J. Ship Res.
39 (1995) 185–193.

8. E.O. Tuck, D.C. Scullen and L. Lazauskas, Ship-wave patterns in the spirit of Michell. In: A.C. King and
Y.D. Shikhmurzaev (eds.), IUTAM Symposium on Free-Surface Flows. Dordrecht, The Netherlands: Kluwer
Academic Publishers (2001) pp. 311–318.

9. Y. Cao, W.W. Schultz and R.F. Beck, Three-dimensional desingularized boundary integral methods for
potential problems. Int. J. Num. Meth. Fluids 11 (1990) 785–803.


